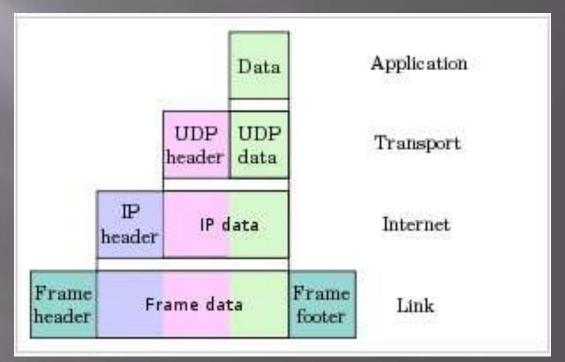
TCP/IP INTRODUCTION by Paul Nicolay ON7DJU December 2010 – Sectie MCL


TCP/IP

- Resulted from research by DARPA in early 1970s after pioneering work by ARPANET
- Designed for essential functions; transmitting data efficiently and routing traffic
- First RFC in December 1974 by Robert E. Khan en Vincent Cerf
- A two network test in 1975 (Stanford London), a three network test in 1977 (US, UK and Norway)
- Declared as standard for military computer networking in 1982 by Department of Defense
- Migration from ARPANET to TCP/IP on January 1st, 1983

Layered Concept

■ Four (five) layers

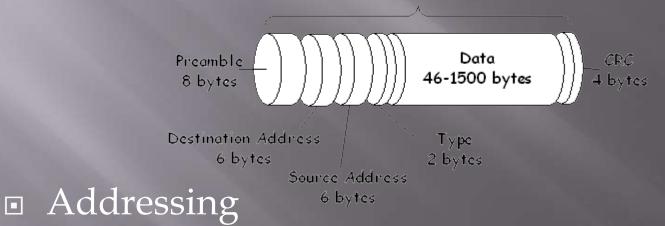
- Application
- Transport
- Network
- Link
- (Physical)

OSI Model has 7 layers

Physical Layer

□ Layer 1 of the OSI model

- Does not apply to TCP/IP directly
- Definition of hardware specifications
 - But hardware can be more than physical layer
 - Pin layout, voltages, cable specifications, ...
- Encoding and signaling
 - Conversion between data and signals, ...
- Data transmission and reception
 - Modulation, ...
- Topology and physical network design
 - Hubs, repeaters, network adapters


Data Link Layer

□ IEEE 802 project (February 1980) IEEE 802.2 media independant IEEE 802.3 ethernet, IEEE 802.11 wireless, ... Logical link control Upper part of DLL, links to network layer Media access control Lower part of DLL, links to physical layer Ethernet uses CSMA/CD, Token ring use a token Error detection Correct errors in physical layer, ie. CRC

Data Link Layer

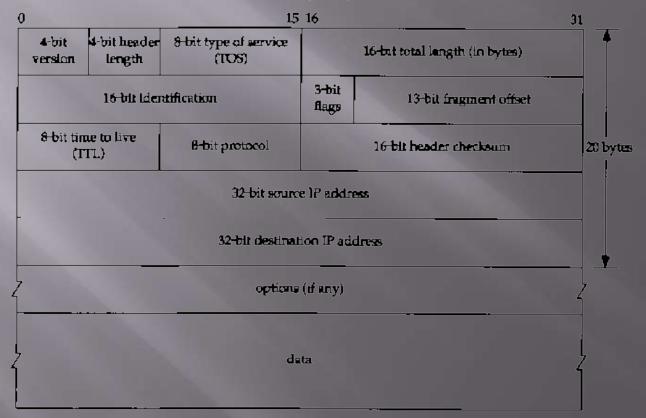
Data framingEncapsulation in frames

Original Ethernet Frame (max size = 1,582 bytes)

- Each device has a hardware or MAC address
- Ethernet has 48 bit address (xx:xx:xx:xx:xx)

Address Resolution Protocol (ARP)

- Used to translate IPv4 addresses (layer 3) to MAC addresses (layer 2)
- IPv6 uses NDP (Neighbor Discovery Protocol)
- Low level
 - ARP is payload of ethernet frame
- Broadcast mechanism
 - Who has x.x.x.?
 - Computer knows if it is local, or remote host
 - Router can reply to broadcast
- ARP cache, arp -a

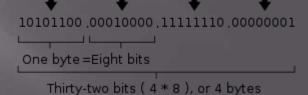

Network Layer

Logical adressing

- Layer 3 address, independant of hardware
- IP-address, unique accross entire network
- Addressing and Routing
 - IP
- Datagram encapsulation
 - Messages are placed in datagrams (packets)
 - 46 to 1500 bytes (header, data)
- Fragmentation and reassembly
 - Based on MTU (Maximum Transmission Unit)
- Error handling

IP

Internet Protocol (IP)



Addressing

IP-address

Numerical label assignd to each device

- 32 bit number (IPv4), 128 bit number (IPv6)
 - □ 4.294.967.296 (2³²) combinations
 - ^D about 3.403×10³⁸ (2¹²⁸) combinations 172 . 16 . 254 . 1
- Human readable formats
 - □ 172.16.254.1 (IPv4)

An IPv4 address (dotted-decimal notation)

□ 2001:db8:0:1234:0:567:8:1 (IPv6)

 Managed by Internet Assigned Numbers Authority (IANA), delegated to five regional registrars (AfriNIC, ARIN, APNIC, LACNIC and RIPE NCC)

Subnetting

Subnetting

- Network, host
- Subnet mask

Classful network architecture (1981)

Class	Leading bits	Size of network number bit field	Size of <i>rest</i> bit field	Number of networks	Addresses per network	Start address	End address
Class A	0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)	0.0.0.0	127.255.255.255
Class B	10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)	128.0.0.0	191.255.255.255
Class C	110	24	8	2,097,152 (221)	256 (2 ⁸)	192.0.0.0	223.255.255.255
Class D (multicast)	1110	not defined	not defined	not defined	not defined	224.0.0.0	239.255.255.255
Class E (reserved)	1111	not defined	not defined	not defined	not defined	240.0.0.0	255.255.255.255

Classless Inter-Domain Routing CIDR (1993)
 CIDR notation (/notation)

Routing

Routing

- Also called layer-3 switching
 - Switches work at layer-2
- Static versus dynamic routing
- Routing tables
 - route print

Routers

- Used to connect two or more logical networks
- Can have multiple interfaces, multiple physical typesCan exchange information (RIP, OSPF, BGP)

ICMP

- Internet Control Message Protocol (ICMP)
 - Core protocol of Internet Protocol suite
- Typically not used to transfer data, but for error messages
- All ICMP packets have an 8 byte header
 - ICMP Type, code and checksum
 - Echo request/reply (0, 8), Destination unreachable (2, 3), Time Exceeded (11), Tracerout (30)...
- Application layer tools that used ICMP
 Ping, traceroute

Transport Layer

- Provides transparent transfer of data
- Services, optional for some protocols
 - Connection oriented
 - Byte orientation
 - Same order delivery
 - Reliability
 - Flow control
 - Congestion avoidance
 - Multiplexing (ports)
- Most well know protocol is TCP

- Transport Control Protocol (TCP)
 Connection oriented

 Requires 3 packets to setup connection

 Provides reliability

 Retransmissions, ordering, error-free, flow and congestion control
 Positive acknowledgements
- Used for many protocols
 DHCP, HTTP, SMTP, FTP, ...

TCP packet layout

0		15 1	6	31
1	16-bit source port	tnumber	16-bit destination port number	
1		32-bit sequenc	e number	
		32-bit acknowledg	pment number	20 bytes
4-bit bender length	reserved (6 bits)	U A P R S F R C S S Y I G K H T N N	16-bit window size	
100	16-bit TCP che	cknim	16-bit urgent printer	
Z		options (i	f any)	
Z		data (lf i	any)	Z

Protocol phases

 Listen, SYN-SYN, SYN-ACK, ACK, FIN-WAIT-1/2, Close Wait, Closing, Last-ACK, Time-Wait, Closed

UDP

User Datagram Protocol (UDP)

1	15 16	
16-bit source port number	16-bit destination port number	
16-bit UDP length	16-bit UDP checksum	
dati	a (if any)	

- Connectionless protocols
 - Packets are sent individually
- Not reliable
 - No retransmission, unordered, checksum optional...
- Used for broadcasting, multicasting, ...
 - IPTV, IP Telephony, ...
- Higher throughput, lower latency

Application Layer

- Process to process communication
 OSI Layer 7
- Examples
 - HyperText Transfer Protocol (HTTP)
 - Simple Mail Transfer Protocol (SMTP)
 - Post Office Protocol (POP3)
 - File Transfer Protocol (FTP)
 - Terminal (TELNET)
 - Dynamic Host Configuration Protocol (DHCP)
 - Domain Name System (DNS)
- Operate at well known ports

NAT

- Network Address Translation (NAT)
 - Popular since 1990s for address exhaustion
 - Modifies network address information
 - Remaps an IP-address space
 - IP-masquerading hides network (often private)
- Drawbacks
 - Affects certain applications
 - FTP (active), SIP, ...
 - Various solutions (NAT traversal, UPnP, ...)
 - No end-to-end connectivity
 - Initiate connections from outside